Girard-Hypquat Conformal Groups.nb
Author
Patrick R. Girard, Patrick Clarysse, Romaric Pujol, Robert Goutte, Philippe Delachartre
Title
Girard-Hypquat Conformal Groups.nb
Description
Supplemental notebook to "Hyperquaternion Conformal Groups"
Category
Academic Articles & Supplements
Keywords
quaternions, hyperquaternions, conformal groups, canonical decomposition
URL
http://www.notebookarchive.org/2021-08-6z1zbda/
DOI
https://notebookarchive.org/2021-08-6z1zbda
Date Added
2021-08-15
Date Last Modified
2021-08-15
File Size
408.22 kilobytes
Supplements
Rights
Redistribution rights reserved



Remove::rmnsm:There are no symbols matching "Global`*.
Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion0,,0,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion0,,0,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
2
1
2
Quaternion[1,0,0,0],Quaternion[0,0,0,0],Quaternion0,,0,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion0,,0,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
2
1
2
Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion0,0,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion0,0,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
2
1
2
Quaternion[1,0,0,0],Quaternion[0,0,0,0],Quaternion0,0,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion0,0,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
2
1
2
1.09861
1.1547
1.1547
0.57735
0.57735
3.
Quaternion,0,0,,Quaternion[0,0,0,0],Quaternion0,,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion-,0,0,-,Quaternion[0,0,0,0],Quaternion0,-,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
2
3
2
3
1
2
6
1
2
6
1
6
1
6
1
2
6
1
2
6
Quaternion,0,0,,Quaternion[0,0,0,0],Quaternion0,,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion-,0,0,-,Quaternion[0,0,0,0],Quaternion0,-,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
2
3
2
3
1
2
6
1
2
6
1
6
1
6
1
2
6
1
2
6
Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion-x3,0,0,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion(-9+2-2+6x3-2-2),0,0,0,Quaternion[x1,0,0,0],Quaternion0,(-+-3x3++),x2,x4
3
2
1
6
2
x1
2
x2
2
x3
2
x4
1
3
2
x1
2
x2
2
x3
2
x4
{Quaternion[1,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
3
2
1
6
2
x1
2
x2
2
x3
2
x4
1
3
2
x1
2
x2
2
x3
2
x4
Quaternion[0,0,0,1],Quaternion[0,0,0,0],Quaternion0,,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion-,0,0,0,Quaternion[0,0,0,0],Quaternion0,-,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
4
1
4
1
2
1
4
1
4
Quaternion[0,0,0,1],Quaternion[0,0,0,0],Quaternion0,,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion-,0,0,0,Quaternion[0,0,0,0],Quaternion0,-,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
4
1
4
1
2
1
4
1
4
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,-1],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
Quaternion0,0,0,,Quaternion[0,0,0,0],Quaternion0,,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[1,0,0,0],Quaternion[0,0,0,0],Quaternion0,-,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
2
1
4
1
4
1
4
1
4
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
Quaternion-,0,0,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,-1],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
3
4
-
3
4
Quaternion[-1,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion0,0,0,,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
3
4
-1
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
0
x10,x2-1,x3,x10,x2,x3-1,x1-1,x20,x3,x1,x20,x3-1,x1-1,x2,x30,x1,x2-1,x30
1
4
1
4
1
4
1
4
1
4
1
4
0,0,-1,,-1,
1
4
1
4
-1,,0,0,,-1
1
4
1
4
,-1,,-1,0,0
1
4
1
4
0
-1
1
4
X1-,X2(12PP1+6PP2+PP3),X3(3PP1-6PP2+4PP3)
PP3
3
1
15
1
15
-
PP3
3
(12PP1+6PP2+PP3)
1
15
(3PP1-6PP2+4PP3)
1
15
-
PP3
3
1
0
0
0
0
1
0
0
0
0
1
-
1
3
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
1
15
1
0
0
4
5
0
1
0
2
5
0
0
1
1
15
Quaternion0,0,0,,Quaternion[0,0,0,0],Quaternion0,,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion-,0,0,0,Quaternion[0,0,0,0],Quaternion0,-,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
4
5
1
5
1
5
2
5
1
5
1
5
Quaternion0,0,0,,Quaternion[0,0,0,0],Quaternion0,,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion,0,0,0,Quaternion[0,0,0,0],Quaternion0,-,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
5
1
10
1
10
2
5
1
10
1
10
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
Quaternion[0,0,0,1],Quaternion[0,0,0,0],Quaternion0,,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion0,-,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
3
10
1
10
3
10
1
10
4
15
1
0
0
1
5
0
1
0
-
2
5
0
0
1
4
15
Quaternion0,0,0,,Quaternion[0,0,0,0],Quaternion0,,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion-,0,0,0,Quaternion[0,0,0,0],Quaternion0,-,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
5
1
20
1
20
1
10
1
20
1
20
Quaternion0,0,0,-,Quaternion[0,0,0,0],Quaternion0,-,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion-,0,0,0,Quaternion[0,0,0,0],Quaternion0,,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
5
1
10
1
10
2
5
1
10
1
10
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion0,-,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion-,0,0,0,Quaternion[0,0,0,0],Quaternion0,,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
20
3
20
1
2
1
20
3
20
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
Quaternion[0,0,0,1],Quaternion[0,0,0,0],Quaternion0,,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion0,-,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
3
10
1
10
3
10
1
10
Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion0,-,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion-,0,0,0,Quaternion[0,0,0,0],Quaternion0,,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
20
3
20
1
2
1
20
3
20
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
{Quaternion[-1,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
Quaternion,0,0,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
4
0
1
1
2
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
Quaternion[0,0,0,1],Quaternion[0,0,0,0],Quaternion0,,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion0,-,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
3
10
1
10
3
10
1
10
Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion0,-,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[-1,0,0,0],Quaternion[0,0,0,0],Quaternion0,,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
10
3
10
1
10
3
10
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
{Quaternion[-1,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
{Quaternion[1,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
0
π
2
2ArcTanh
1
2
0
1
1
2
Quaternion[0,0,0,1],Quaternion[0,0,0,0],Quaternion0,,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion-,0,0,0,Quaternion[0,0,0,0],Quaternion0,-,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
4
1
4
1
2
1
4
1
4
Quaternion0,0,0,,Quaternion[0,0,0,0],Quaternion0,,,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[1,0,0,0],Quaternion[0,0,0,0],Quaternion0,-,-,0,Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]
1
2
1
4
1
4
1
4
1
4
{Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0],Quaternion[0,0,0,0]}
-
3
4
-1
0


Cite this as: Patrick R. Girard, Patrick Clarysse, Romaric Pujol, Robert Goutte, Philippe Delachartre, "Girard-Hypquat Conformal Groups.nb" from the Notebook Archive (2021), https://notebookarchive.org/2021-08-6z1zbda

Download

