Bound states of the Yukawa Potential from Hidden Supersymmetry
Author
Mauro Napsuciale, Simón Rodríguez
Title
Bound states of the Yukawa Potential from Hidden Supersymmetry
Description
In this notebook we provide a code for the calculation of eigenvalues and eigenstates for the bound states of the Yukawa Potential following the algorithm described in the following papers i) Phys.Lett.B 816 (2021) 136218 (arXiv: 2012.12969), ii) arXiv:2102.07160, submitted for publication to Progress of Theoretical and Experimental Physics (PTEP); you can freely use it but we kindly ask you to cite these papers as the original source.
Category
Academic Articles & Supplements
Keywords
Yukawa potential, Bound states
URL
http://www.notebookarchive.org/2021-05-7ea9cb6/
DOI
https://notebookarchive.org/2021-05-7ea9cb6
Date Added
2021-05-16
Date Last Modified
2021-05-16
File Size
244.78 kilobytes
Supplements
Rights
Redistribution rights reserved



Solution to the Yukawa potential from hidden supersymmetry
Solution to the Yukawa potential from hidden supersymmetry
In this notebook we provide a code for the calculation of eigenvalues and eigenstates for the bound states of the Yukawa Potential following the algorithm described in the following papers i) Phys.Lett.B 816 (2021) 136218 (arXiv: 2012.12969),ii) arXiv:2102.07160, submitted for publication to Progress of Theoretical and Experimental Physics (PTEP), you can freely use it but we kindly ask you to cite these papers as the original source.The solution uses the hidden supersymmetry of the Yukawa potential and an expansion of the potential V(r)=- in powers of δ= where denotes the Bohr radius of the system. Energy levels are given by Rydberg units, i.e. E=ϵ, and this code yield results for ϵ. The eigestates are given by(r,θ,ϕ)=(r,δ)(θ,ϕ)with (r,δ)=(x,δ), where x=.Our solution uses an expansion of the potential to order “MaxOrder”, and the code yields the solution as a Taylor series in δ to any order k between k=0 and k=”MaxOrder”. Also, the code yields the solution (x,δ) for n between n=1 and n=”DualOrder”. The value of both “MaxOrder” and “DualOrder” can be set in the next section (Input Parameters) and are the only parameters you should change in this notebook. The core of the code is in the section named “Supersymmetric Hamiltonians”. You must just run the cells in this section. We do not recomend you to modify them.The last section, “Eigenvalues, eigenstates and phenomenology”, yields the solutions of the Yukawa potential. We give some examples of how to ask for the eigenstates and eigenvalues and to make some consistency checks. This section includes some phenomenology, the calculation of critical screenning lengths and probabilities.
α
r
-
r
D
e
a
0
D
a
0
1
2
2
mc
2
α
ψ
nlm
R
nl
Y
lm
R
nl
u
nl
x
r
a
0
u
nl
Input Parameters
Input Parameters
MaxOrder=31;DualOrder=15;
Supersymmetric Hamiltonians
Supersymmetric Hamiltonians
Order Duality 0 and oc
Order Duality 0 and oc
Dmax=MaxOrder;Nmax=DualOrder;(*Order0*)FSP[0,L_,k_,r_]:=If[r-s≥u||s≥k-u,0,blkr[[1,u,r-s]]blkr[[1,k-u,s]]]-(2L+r+3)blkr[[1,k,r+1]];FI[0,L_,k_]:=-;blkr=Table[0,{k,1,Nmax},{i,1,Dmax},{j,1,Dmax}];For[k=2,k<=Dmax,k++,blkr[[1,k,k-1]]=FI[0,L,k]];Fori=3,i<=Dmax,i++,Forj=i-2,j≥1,j--,blkr[[1,i,j]]=-FSP[0,L,i,j]//Simplify;(*Orderoc*)FSP[m_,L_,k_,r_]:=If[r-s≥u||s≥k-u,0,blkr[[m+1,u,r-s]]blkr[[m+1,k-u,s]]]-(2L+2m+r+3)blkr[[m+1,k,r+1]];FI[m_,L_,k_]:=-;Foroc=1,oc<Nmax,oc++,For[k=2,k<=Dmax,k++,blkr[[oc+1,k,k-1]]=FI[oc,L,k]];Fori=3,i<=Dmax,i++,Forj=i-2,j≥1,j--,blkr[[oc+1,i,j]]=-FSP[oc,L,i,j]-2(j+1)blkr[[oc1,i,j+1]]//Simplify;(*SuperpotencialsandFactorizationConstantCL*)Clear[k];B[x_,L1_,oc_,k_]:=blkr[[oc+1,k,r]]/.LL1ω[x_,L_,δ_,oc_,k_]:=B[x,L,oc,s];W[x_,L_,δ_,oc_,k_]:=-+ω[x,L,δ,oc,k];Cl[L1_,δ_,oc_,k_]:=-+2δ+2blkr[[oc1,r,1]]+(2L1+2oc+3)*blkr[[oc+1,r,1]]/.LL1Cl[L1_,δ_,0,k_]:=-+2δ+((2*L1+3)*blkr[[1,r,1]])*/.LL1
k-1
∑
u=1
r-1
∑
s=1
k
(-1)
L+1
Factorial[k]
L+1
2
k-1
∑
u=1
r-1
∑
s=1
k
(-1)
L+m+1
Factorial[k]
(L+oc+1)
2
oc
∑
oc1=1
k-1
∑
r=1
r
x
k
∑
s=1
s
δ
1
L+oc+1
L+oc+1
x
1
2
(L1+oc+1)
k
∑
r=2
oc
∑
oc1=1
r
δ
1
2
(L1+1)
k
∑
r=2
r
δ
Eigenfunctions & Eigenvalues
Eigenfunctions & Eigenvalues
Energies
Energies
En[n_,L_,δ_,k_]:=Cl[L,δ,n-L-1,k];
Eigenfunciones
Eigenfunciones
ϕ[x_,L_,δ_,oc_,k_,0]:=Exp-*Exp[-Integrate[ω[x,L,δ,oc,k],x]]ϕ[x_,L_,δ_,oc_,k_,r_]:=-D[ϕ[x,L,δ,oc,k,r-1],x]+W[x,L,δ,oc-r,k]ϕ[x,L,δ,oc,k,r-1]u[x_,n_,L_,δ_,k_]:=ϕ[x,L,δ,n-L-1,k,n-L-1]
L+oc+1
x
x
L+oc+1
Normalization
Normalization
Norm2[n_,L_,δ_,k_]:=Normal[Series[Module[{x},Integrate[Normal[],{x,0,∞}]],{δ,0,2*k}]//Simplify];un[x_,n_,L_,δ_,k_]:=u[x,n,L,δ,k]Sqrt[Norm2[n,L,δ,k]];uns[x_,n_,L_,δ_,k_]:=Normal[Series[un[x,n,L,δ,k],{δ,0,k}]];
2
(Series[u[x,n,L,δ,k],{δ,0,k}])
3
a0
Eigenvalues, eigenstates and phenomenology
Eigenvalues, eigenstates and phenomenology
Energies
Energies
The energies are given by where:
n=principal quantum number
l=angular momentum number
k=delta expansion order, less than or equal to MaxOrder
You must use numeric values for n, l and k.
En[n,l,δ,k]
n=principal quantum number
l=angular momentum number
k=delta expansion order, less than or equal to MaxOrder
You must use numeric values for n, l and k.
En[1,0,δ,31]
-1+2δ-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
3
2
δ
2
3
δ
11
4
δ
8
21
5
δ
8
145
6
δ
24
757
7
δ
48
69433
8
δ
1536
321449
9
δ
2304
2343967
10
δ
5120
24316577
11
δ
15360
2536041607
12
δ
442368
47860811537
13
δ
2211840
145923785051
14
δ
1720320
159957248809633
15
δ
464486400
42949294634584421
16
δ
29727129600
46466864975430973
17
δ
7431782400
236707218502703471
18
δ
8493465600
2532503612322014333
19
δ
19818086400
572761545510214991993
20
δ
951268147200
2154903296646828026987
21
δ
739875225600
3175701402265890412257977
22
δ
219742942003200
6460837466357014142516729
23
δ
87897176801280
1077124814774677420120851827
24
δ
2812709657640960
1077106412854448519892862394327
25
δ
527383060807680000
5556455763967436473731350818903
26
δ
498616712036352000
15344972048407680571904214989889581
27
δ
246815272457994240000
3266322590080908603607725231964280071
28
δ
9214436838431784960000
19022474359491942077284802980167651521
29
δ
9214436838431784960000
727090287686525516767769990699387693327
30
δ
59235665389918617600000
61761404321733830903082674090545487890633
31
δ
829299315458860646400000
Eigenfunctions
Eigenfunctions
The eigenfunctions normalized to order are given by You must use numeric values for n, l and k.
k
δ
uns[x,n,l,δ,k]
uns[x,3,0,δ,5]//Simplify
-x(1248+12(-250+789δ)+4(400+10800δ-110673)+2700(40-184δ-747+14067)-90(80-160δ-990+14823)-405(320-19440+196560-3250125+57158703)+270x(320-19440+196560-3250125+57158703)-30(320-9720+146880-3386205+60293403))
1
194400
3
3
a0
-x/3
7
x
5
δ
6
x
4
δ
5
x
3
δ
2
δ
3
x
2
δ
2
δ
3
δ
4
x
2
δ
2
δ
3
δ
2
δ
3
δ
4
δ
5
δ
2
δ
3
δ
4
δ
5
δ
2
x
2
δ
3
δ
4
δ
5
δ
Checking Schrodinger equation
Checking Schrodinger equation
We write the Schrodinger equation as:uand we check that it vanishes to order k
-1
u
2
2
x
+--ϵ
L(L+1)
2
x
2*Exp[-δ*x]
x
SchEc[x_,n_,L_,δ_,k_]:=NormalSeries-+--En[n,L,δ,k],{δ,0,k};SchEc[x,8,0,δ,5]
D[u[x,n,L,δ,k],{x,2}]
u[x,n,L,δ,k]
L(L+1)
2
x
2*Exp[-δ*x]
x
0
Critical Screening
Critical Screening
Critical screening is determined using Pade’s approximants
EnPadeMm1M Is the Pade’s approximant [M+1,M]
EnPadeMM Is the Pade’s approximant [M,M]
The critical screening lies between the first positive zeros of these approximantst
EnPadeMm1M Is the Pade’s approximant [M+1,M]
EnPadeMM Is the Pade’s approximant [M,M]
The critical screening lies between the first positive zeros of these approximantst
M=14;EnPadeMm1M=PadeApproximant[En[2,1,δ,2*M+1],{δ,0,{M+1,M}}];EnPadeMM=PadeApproximant[En[2,1,δ,2*M+1],{δ,0,{M,M}}];NSolve[EnPadeMm1M0,δ,Reals,WorkingPrecision20]NSolve[EnPadeMM0,δ,Reals,WorkingPrecision20]Plot[{EnPadeMm1M,EnPadeMM},{δ,0.2,0.3}]
{{δ-1.3174479486069275645},{δ0.6980602143962254501},{δ0.3922052512567456889},{δ-0.3669091969847330551},{δ0.28646548678206990427},{δ0.23966938223504799538},{δ0.21989862925331728444},{δ-0.20445418697180269923},{δ-0.14032571438849857118},{δ-0.10701327259877170132},{δ-0.08696232934759496153},{δ-0.07325043590827443527},{δ-0.06254730153814269979},{δ-0.05347630608419904364},{δ-0.04521889866810545039}}
{{δ0.6075230663065127198},{δ-0.4606048319768178204},{δ0.3645120454176600586},{δ0.27618954529464645945},{δ0.23655299977615848688},{δ-0.22982728229689627089},{δ0.21997911271397763045},{δ-0.15116324451086655805},{δ-0.11263182182599526477},{δ-0.09025656152690614128},{δ-0.07544457788695117790},{δ-0.06415785728615235930},{δ-0.05468015761593800895},{δ-0.04610044319092197069}}
Probabilities
Probabilities
P10Pad77[x_,δ_]=PadeApproximant[uns[x,1,0,δ,16],{δ,0,{8,8}}]/.a01;
P105[x_,1,0,δ_]=;Plot10=Plot[{P105[x,1,0,0],P105[x,1,0,1/5],P105[x,1,0,1/2],P105[x,1,0,3/4],},{x,0,10},PlotRange{0,1.4},FrameTrue,AxesFalse,FrameLabel"r/","|r ",PlotStyle{Directive[Black],Directive[Dashed,Red],Directive[Dotted,Blue],Directive[DotDashed,Purple],Directive[Dashed,Black]},AspectRatio0.75,PlotLegendsPlaced[{"δ=0","δ=1/5","δ=1/2","δ=3/4","δ=3/4:[8,8]"},{0.8,0.7}],ImageSize400,LabelStyleDirective[Bold,10],PlotPoints4]
2
(uns[x,1,0,δ,5]/.a01)
2
(P10Pad77[x,3/4])
a
0
R
10
2
|
Clear[PadeEn10]PadeEn10[δ_,M_,N_]:=PadeApproximant[En[1,0,δ,31],{δ,0,{M,N}}];Pade10=Plot[{Evaluate[PadeEn10[δ,11,10]],Evaluate[PadeEn10[δ,10,10]],Evaluate[PadeEn10[δ,16,15]],Evaluate[PadeEn10[δ,15,15]],0},{δ,1.188,1.1905},PlotRange{-3*,4*},AxesFalse,FrameTrue,PlotStyle{Directive[Red,Dashing[{0.05,0.01}]],Directive[Red,Dashed],Directive[Blue],Directive[Blue,Dotted],Black},AspectRatio1,PlotLegendsPlaced[{"[11/10]","[10/10]","[16/15]","[15/15]"},{0.8,0.3}],ImageSize450,LabelStyleDirective[Bold,12],FrameLabel{"δ","(δ)"}]Export["PadeE10.pdf",Pade10]
-6
10
-7
10
ϵ
10
PadeE10.pdf
E10=Plot[{Evaluate[PadeEn10[δ,5,5]],En[1,0,δ,3],En[1,0,δ,6],En[1,0,δ,9]},{δ,0,1.2},PlotRange{-1,0},AxesFalse,FrameTrue,PlotStyle{Directive[Blue],Directive[Red,Dashing[{0.05,0.01}]],Directive[Red,Dashed],Directive[Blue,Dotted],Black},AspectRatio1,PlotLegendsPlaced[{"[5/5]","k=3","k=6","k=9"},{0.8,0.7}],ImageSize450,LabelStyleDirective[Bold,12],FrameLabel{"δ","(δ)"}]Export["E10.pdf",E10]
ϵ
10
E10.pdf


Cite this as: Mauro Napsuciale, Simón Rodríguez, "Bound states of the Yukawa Potential from Hidden Supersymmetry" from the Notebook Archive (2021), https://notebookarchive.org/2021-05-7ea9cb6

Download

